LOCAL MONODROMY OF p-DIVISIBLE GROUPS

نویسنده

  • JEFFREY D. ACHTER
چکیده

A p-divisible group over a field K admits a slope decomposition; associated to each slope λ is an integer m and a representation Gal(K) → GLm(Dλ), where Dλ is the Qp-division algebra with Brauer invariant [λ]. We call m the multiplicity of λ in the p-divisible group. Let G0 be a p-divisible group over a field k. Suppose that λ is not a slope of G0, but that there exists a deformation of G in which λ appears with multiplicity one. Assume that λ 6= (s − 1)/s for any natural number s > 1. We show that there exists a deformation G/R of G0/k such that the representation Gal(Frac R) → GL1(Dλ) has large image.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigid Local Systems and Alternating Groups

In earlier work [Ka-RLSFM], Katz exhibited some very simple one parameter families of exponential sums which gave rigid local systems on the affine line in characteristic p whose geometric (and usually, arithmetic) monodromy groups were SL2(q), and he exhibited other such very simple families giving SU3(q). [Here q is a power of the characteristic p, and p is odd.] In this paper, we exhibit equ...

متن کامل

non-divisibility for abelian groups

Throughout all groups are abelian. We say a group G is n-divisible if nG = G. If G has no non-zero n-divisible subgroups for all n>1 then we say that G is absolutely non-divisible. In the study of class C consisting   all absolutely non-divisible groups such as G, we come across the sub groups T_p(G) = the sum of all p-divisible subgroups and rad_p(G) = the intersection of all p^nG. The proper...

متن کامل

Rigid Local Systems and Finite Symplectic Groups

For certain powers q of odd primes p, and certain integers n ≥ 1, we exhibit explicit rigid local systems on the affine line in characteristic p > 0 whose geometric and arithmetic monodromy groups are Sp(2n, q).

متن کامل

INDEPENDENCE OF l OF MONODROMY GROUPS

Let X be a smooth curve over a finite field of characteristic p, let E be a number field, and let L = {Lλ} be an E-compatible system of lisse sheaves on the curve X . For each place λ of E not lying over p, the λ-component of the system L is a lisse Eλ-sheaf Lλ on X , whose associated arithmetic monodromy group is an algebraic group over the local field Eλ. We use Serre’s theory of Frobenius to...

متن کامل

0 Some examples related to the Deligne - Simpson problem ∗

In the present paper we consider some examples relative to the Deligne-Simpson problem (DSP) which is formulated like this: Give necessary and sufficient conditions upon the choice of the p+ 1 conjugacy classes cj ⊂ gl(n,C), resp. Cj ⊂ GL(n,C), so that there exist irreducible (p+1)-tuples of matrices Aj ∈ cj , A1 + . . .+Ap+1 = 0, resp. of matrices Mj ∈ Cj , M1 . . .Mp+1 = I. By definition, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006